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Abstract: The aim of this paper is to investigate some optimal slope mixture designs in the second degree Kronecker model 

for mixture experiments. The study is restricted to weighted centroid designs, with the second degree Kronecker model. For the 

selected maximal parameter subsystem in the model, a method is devised for identifying the ingredients ratio that leads to an 

optimal response. The study also seeks to establish equivalence relations for the existence of optimal designs for the various 

optimality criteria. To achieve this for the feasible weighted centroid designs the information matrix of the designs is obtained. 

Derivations of D-, A- and E-optimal weighted centroid designs are then obtained from the information matrix. Basically this 

would be limited to classical optimality criteria. Results on a quadratic subspace of H-invariant symmetric matrices containing 

the information matrices involved in the design problem was used to obtain optimal designs for mixture experiments 

analytically. The discussion is based on Kronecker product algebra which clearly reflects the symmetries of the simplex 

experimental region. 

Keywords: Slope Mixture designs Kronecker product, Optimal Designs, Weighted Centroid Designs,  

A-, D-, E-Optimality and H- invariant Symmetric Matrices 

 

1. Introduction 

The design of experiment involves selection of levels of one 

or more factors for optimizing one or more criteria. There are 

often many competing criteria that could be considered in 

selecting the design, and one is typically forced to make 

trade-offs between these objectives when choosing 

competing design. Several optimality criteria have been 

developed to address estimation or prediction through the use 

of variance characteristics. D- and A-optimality criteria 

provide a measure of the variance of the model coefficient 

through the moment matrix, '( ) / NM X X= . 

Many practical problems in research are associated with 

investigation of mixture ingredients ( )1 2, , ..., qt t t  of m-

factors with ( )0
i

t ≥  and further restriction of 1
i

t =∑ . The 

ingredients influence the response through ratios or 

proportions. In mixture experiment the factors

( )1 2, ,..., , 2qt t t for q ≥ , such that the mixture components 

'
i

t s  satisfies the condition below; 

0 1, 1,2, ,...,
i

t i q≤ ≤ =                                   (1) 
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The simplest mixture design is given by 2q =  resulting to 

straight line (�� + �� = 1).	The constraints in equation (1) 

yield a simplex experimental region. The {�,
}  simplex 

lattice designs and simplex-centroid designs were introduced 

by Scheff �́	 (1958, 1963). Scheff �́	 (1963) gave simplex 

centroid designs which consists of 2 1q −  points with q  

permutations of ( )1,0,0,...0  (q pure blends), (qC2) 

permutations of 
1 1

, ,0,..., 0
2 2

 
 
   

given by (qC2) binary blends 

and the overall centroid 
1 1 1

, ,...,
q q q

 
 
 

, the q-nary blend. 

For weighted centroid, the weights α1, α2,..., αn	≥ 0, with 

α1+α2+...+αn = 1, η = α�η� + α�η�+⋯+ α�η� , is a 

weighted centroid design that constitutes a minimal complete 

class of designs for Kiefer ordering (Draper and Pukelsheim, 

(1998)). The definitive work by Cornel (1990) listed 

numerous examples of applications of mixture experiments 

and provides a thorough discussion for both theory and 

practice. Early seminal work done by Scheffe’ (1958, 1963) 

suggested and analyzed canonical model forms when the 

regression function for the expected response is a polynomial 

of degree one, two or three for the expected response 

otherwise referred to as the S- models or S-polynomials. The 

main experimental domain is a probability simplex given by; 

( ) [ ]1

1

,... ' 0,1 : 1
m

n

m m i

i

T t t t t
=

 = = ∈ = 
 

∑                        (2) 

under the experimental condition 
m

t T∈  where the response 

t
Y  is taken to be the real valued random variable. In a 

polynomial regression model the expected value ( )t
E Y is a 

polynomial function of t . 

In this paper, our concern is in the quadratic regression 

function represented by the homogeneous second degree 

Kronecker polynomial. The expected response assumes the 

form in equation (3), as given Draper and Pukelsheim 

(1998b, 1999). 

����� = ∑ ∑ ������� �!� �!� = (�⨂�)′�               (3) 

 

The use of Kronecker representation forces each entry in 

the moment matrix to became; 

M($)=% (�⨂�)& (�⨂�)′'$                     (1) 

to be homogeneous of degree four. 

According to Pukelsheim (2006), an information 

matrix 	ϕ	 on NND(s) is called ℋ − invariant if ℋ  is a 

subgroup of the general linear group GL(s) and all the 

transformation H∈ ℋ fulfil the equation below; 

ϕ(c) = 	ϕ(HCH/), ∀ C∈ NND(s)                 (2) 

For invariance of matrix means, Pukelsheim (2006) proved 

that for ℋ  for which a subgroup of of GL(s), that for 

p∈ �−∞: 0) ∪ (0:∞� the matrix mean 	ϕ7  is H-invariant iff 

ℋ	is a subgroup of the orthogonal matrices, i. e. ℋϵ	orth(s). 

On the converse he assumed ℋ  to be a subgroup of 

orthogonal matrices. But 	ϕ7	depends on C only through its 

eigenvalues, since the eigenvalues of C and HCH/  are 

identical and hence invariance. 

It is important to note that invariance for the determinant 

criterion 	ϕ9  holds relative to the group of unimodal 

transformations 

unim(s) = {H ∈ GL(s): detH = ±1                     (3). 

For an arbitrary non-empty subset ℋ of s s× matrices we 

define a symmetric of s s× C to be H-invariant iff; 

C = HCH′	∀ H∈ ℋ                           (4) 

The set of all H-invariant symmetric s s× matrices are 

denoted by Sym (S,	ℋ). Given a particular set ℋ such that; 

{
{
{

'

: ( )

( , ) : , , ) ( )

: ( )

s

z

s s s

s

z for H sign s

Sym S H I I I for H perm s

I for H orth s

α β α β

α α

 ∆ ∈ℜ =

= + ∈ℜ =
 ∈ℜ =

 (5) 

H-invariant matrices are diagonal matrix if ℋ is the sign 

change group sign(s). They are completely symmetric 

matrices if they have identical on diagonal entries and 

identical on off diagonal entries for permutation group 

perm(s). They are multiples of the identity matrix under the 

full orthogonal group orth(s). 

In this paper we study the optimal slope mixture design 

using weighted centroid in the second order Kronecker 

mixtures model. Specifically, the study used the A-, D- and 

E-optimality criteria for maximal parameter subsystem of 

interest. 

2. Design Problem 

The main design problem for this paper is to obtain a 

design with maximum information for the maximal 

parameter subsystem K θ′ , subject to the side’s conditions. 

The maximum is accomplished through the application of A-, 

D-, and E-optimality criteria of weighted centroid design 

which follows the Kiefer-Wolfowitz equivalence theorem. 

We consider the second degree Kronecker model 

suggested by Draper and Pukelsheim (1998) given as; 

( ) ( ) ( )2

, 1 ,

'
m

t ii i ij ji i j

i j i j

E Y f t t t tθ θ θ θ
=

= = + +∑ ∑    (9) 

where 
t

Y  the observed response under the experimental 

conditions t T∈  is taken to be a scalar random variable and 

( ) 2

11 22, ,..., ' m

mm Rθ θ θΘ = ∈             (6) 

is unknown parameter. 

The moment matrix is given by 
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( ) ( ) ( ) '
T

M f t f t dτ τ= ∫                  (7) 

for the second-degree Kronecker-model has all entries 

homogeneous in degree four and reflects the statistical 

properties of a designτ . Kinyanjui (2007) and Ngigi (2009) 

showed that second degree mixture experiments for maximal 

parameter subsystem with 2m ≥  ingredients, unique D-and 

A-optimal weighted centroid designs for 'K θ  exist. In the 

same study E-optimal weighted centroid design mixture 

experiment with two ingredients only was derived. In this 

paper, we extend their work by deriving D-, A- and E-

optimal weighted centroid designs for three ingredients. 

The primary concern of the experimenter is to learn more 

about the subsystems of interest. This allows the designer to 

evaluate the performance of a design relative to the 

subsystems of interest only. The parameter system of the 

mixture experiments contains a lot of repeated terms making 

it rank deficient hence not all the parameters can be estimated 

efficiently. The parameter subsystem with 
1

2

m + 
 
 

 

parameters have been shown to have similar properties to 

those of the full parameter system. K is called a maximal 

coefficient matrix for M. 

In this paper R-Gui (3.0.1) was used for analysis and in the 

computation of the A-, D- and E-optimality criteria. 

3. Computation of the Coefficient, 

Moment and Information Matrices 

For the full second-order model equation for three 

ingredient; 

�(E) = ������ + ������� + ��F���F + ������� + ������ +	��F���F +	�F��F�� +	�F��F�� +	�FF�F�         (8) 

Our aim is to derive the coefficient ( )K , moment (M)  and 

the information ( )C  matrices to obtain an optimal mixture. 

3.1 Coefficient Matrix ( )K  

An experimenter may find it expensive and unnecessary to 

work with the full parameter system θ, and therefore may 

wish to study s out of the k s k≤  components. This is 

achieved by studying the linear parameter subsystem of 

interest 
'

K θ  for some k s× matrix K. K is referred to as the 

coefficient matrix of the parameter sub-system K′θ. 

Draper and Pukelshein (1998b) proposed a representation 

involving the Kronecker square t t⊗ , the 
2

1m ×  vector 

consisting of the squares and cross products of the 

components of t  in lexicographic order. 

Given the regression function (888888) we obtain the 

order as; 

2 2 2

11 1 12 1 2 13 1 3 21 2 1 22 2 23 2 3 33 3
(t) tf t t t t t t t t t tθ θ θ θ θ θ θ= + + + + + +   (9) 

The subsystem of interest is given as in equation (15); 

 

11

12 21

13 31

'

22

23 32

33

2

2

2

K

θ
θ θ

θ θ
θ

θ
θ θ

θ

 
 + 
 
 +
 

=  
 
 

+ 
 
  
 

                                   (10) 

3.2. Moment Matrix (M) 

From the General Equivalence Theorem, if M∈ ℳ  is a 

competing moment matrix that is feasible for J/�  with 

information matrix K = KL(M).  Then M is N −  optimal 

for	K/θ in ℳ if and only if there exists an NND(s) matrix D, 

that solves the polarity equation 

N(K)NO∝(Q) = �RST�	KQ = 1 

And also there exists a generalised inverse G of M, such 

that the matrix U = VJKQKJ/V/ that satisfies the normality 

inequality 

�RST�	WU ≤ 1	YZR	S[[	W ∈ ℳ 

But for optimality, equality is obtained in the normality 

inequality if M is inserted instead of A. 

Using the Kronecker product, the three factors, (t1, t2, 

t3,)=(1,0,0), (0,1,0) and (0,0,1), for the pure mixture blends 

are obtained as (�⨂�)(�⨂�)′; resulting to matrices for each 

of the design point. This procedure was repeated for the three 

design points namely, pure, binary and the centroid. 

Step 1:- Using pure blends the design is given by 

combining the three Kronecker matrices to be the design
1

η . 

Further the Moment Matrix 
1

( )m η corresponding to this 

design (
1

η ) was obtained. 

Step 2:- For the binary mixture blends (1/2, 1/2, 0), (1/2, 0, 

1/2) and (0, 1/2, 1/2), we work out the Kronecker product 

matrices as follows, ( ) ( ) ( )1 1 2 2 3 3
,t t t t and t t⊗ ⊗ ⊗ . Using the 

binary blends the design and by combining the three 

Kronecker matrices then design 
2

η  was constructed with 

further Moment Matrix corresponding to the design \�  of 

binary blends 
2

( ).m η  

Step 3:- Finally, we obtain the Kronecker product matrix 

for the centre point with the following coordinates
1 1 1

, ,
3 3 3

 
 
 

. 

](^)	 for the Weighted Centroid Design can be obtained 

using elementary designs ^_,	 ^`	and ^a		are used to generate 

the weighted centroid design ^	with points 

�� = b1 0 0 �
�

�
� 0 �

Fc/,	  		�� = b0 1 0 �
� 0 �

�
�
Fc/	and 

�F = b0 0 1 0 �
�

�
�

�
Fc/	 such that: for weights 

d�	, d�	, dF 	≥ 0	with d� +	d� +	dF = 1,	the design  

 



89 Wambua Alex Mwaniki et al.:  Optimal Slope Designs for Second Degree Kronecker Model Mixture Experiments  

 

\ = 	d�\� +	d�\� + dF�	e	fgf fh�ijk	lfh�jm�e\	F 
with weights. 

d� = 3(op −	o�� +	o���)	,	 d� = 24(oF� +	o�� − 	2o���) and dF = 81o���where op =	% ��p'$, oF� =	% ��F��'$,		o�� =	% ������'$,	 o��� =	% ������F'$,                                                             (11) 

We know that, the moment matrix 

M(\) = 	d�M(\�) + 	d�M(\�) + M(\F)                                              (12) 

⇒	op 				= 0.162477954 

							o�� 		= 0.010692239 

						oF� = 0.010692239 

						o��� = 0.00176366843                                                                        (13) 

∴ 	d� = 0.428571433 

					d� = 0.428571387 

and 

					dF = 0.142857142                                                                            (14) 

Alternatively, 

 M(\) =

z
{{
{{
{|
op oF� oF�oF� o�� o���oF� o��� o��

oF� o�� o���o�� oF� o���o��� o��� o���
oF� o��� o��o��� o��� o���o�� o��� oF�oF� o�� o���o�� oF� o���o��� o��� o���

o�� oF� o���oF� op oF�o��� oF� o��
o��� o��� o���o��� oF� o��o��� o�� oF�oF� o��� o��o��� o��� o���o�� o��� oF�

o��� o��� o���o��� oF� o��o��� o�� oF�
o�� o��� oF�o��� o�� oF�oF� oF� op }

~~
~~
~�

                                    (15) 

Where op =	% ��p'$, oF� =	% ��F��'$,		o�� =	% ������'$,	 o��� =	% ������F'$, 
⇒	op = 0.162477954 

							o�� = 0.010692239 

						oF� = 0.010692239 

						o��� = 0.00176366843 

3.3. Information Matrix 

Pukelsheim (1993) gave the definition of an information 

matrix as: 

For a design ξ with the moment matrix M, the information 

matrix for K/θ	with KxS coefficient matrix K of full column 

S, is defined to be C�(M) where the mapping C�  from the 

cone NND(K) into the space sym(S) is given by 

( )
;

'min
S K

S

k

L R LK I

C A LAL
×∈ =

=
 for all A∈ NND(K) 

Where the minimum is taken according to Loewner 

ordering over all the left inverses L of K. 

Now to obtain the information matrix, we utilize the equation 

'
c

D HCH=                                (16) 

Where D� is the coefficient matrix of the slope obtained 

from the ( )k
C C M=  and H obtained by getting the 

differentials of the elements of the design matrix; 

M( )τ = 2 2 2

1 1 2 1 3 2 1 2 2 3 3 1 3 2 3
t t t t t t t t t t t t t t t+ + + + + + + +    (17) 

( ) ( ) ( )2 2 2

1 1 2 2 1 1 3 3 1 2 2 3 3 2 3

1 1 1
/ ( ) , i 1,2,3.

2 2 2
i

y t t t t t t t t t t t t t t t t H∂ ∂ + + + + + + + + = =  (18) 

This gives; 

1 2 3

1 2 3

1 2 3

2 0 0 0

0 0 2 0

0 0 0 2

t t t

H t t t

t t t

 
 =  
 
 

 

',C LML=  where L is the left inverse of K given by; 
1 '( 'K)L K K−=  

From equation (23), we have; 

2 11 2 11 2 11

2 11 2 11 2 11

2 11 2 11 2 11

0.7356 0.1856 0.0928 0.1144 0.0928 0.1144

0.0928 0.1144 0.7356 0.1856 0.0928 0.1144

0.0928 0.1144 0.0928 0.1144 0.7356 0.1856

C

µ µ µ µ µ µ
µ µ µ µ µ µ
µ µ µ µ µ µ

+ + + 
 = + + + 
 + + + 

 



 International Journal of Applied Mathematics and Theoretical Physics 2017; 3(4): 86-91 90 

 

Draper and Pukelsheim (1998), expressed the lower order 

moments in terms of fourth order moments, such that: 

o�� = 2oF� + 2o�� + 5o���                 (19) 

o� = op + 2oF� + 2o��                        (20) 

Substituting μ�� in equation (20) we get 

o� = op + 6oF� + 4o�� + 10o���            (21) 

But, 

op = 0.00176366843                      (22) 

Hence, 

o�� = 0.287037028                            (23) 

4. Optimality Tests 

A-, D- and E-optimal criteria were compute using the 

derived information matrices 
c

D . 

4.1. A-Optimality 

Invariance under reparameterization loses its appeal if the 

parameters of interest have a definite physical meaning. The 

average variance criterion save the situation by providing a 

reasonable alternative. If the coefficients matrix is partitioned 

into its columns, 
1 2

( , ,..., )
s

K c c c= then the inverse 
1

1

φ−

can 

be represented as 

( )( )
( ) 1

1

1 1

k

k

C A

traceC A
sφ

−

−

=  

1
'

1
'

j j

j s

trace K A K
s

C A C
s

−

−

≤

=

= ∑
 

This corresponds to the average of the standardized 

variances of the optimal estimates of the scalar parameter 

systems
1
' ,..., '

s
c cθ θ

 
formed from the columns of K. 

We then take recourse to the following average variance 

criterion as given by Pukelsheim (1993, pg 135). 

( )
1

1

1

1
C traceC

s
φ

−
−

−
 =  
 

= 0.0585. 

4.2. D-Optimality 

For the comparison of different criteria and for applying 

the theory of information functions, the version 

( ) ( )
1

0 det sC Cφ =  is appropriate the maximisation of the 

determinant of the information matrices is the same as 

minimizing the determinant of the dispersion matrices 

because of the formula ( ) ( )1 1
det detC C

− −= . We therefore 

take recourse to the formula given in Pukelsheim (1993 pg 

135) ( ) ( )
1

0 det sC Cφ =  to obtain D- optimal value of 

0.07749. 

4.3. E-Optimality 

The criteria φ−∞  evaluation of the smallest Eigen value 

also gains in understanding by a passage to variance. It is the 

same as minimizing the largest Eigen value of the dispersion 

matrix. 

( )( )
( )( )1

max

: 1

1
' 'max

s

k

k

Z R ZC A

C A Z K A KZλ
φ

− −

∈ =−∞

= =  

The Eigen value criterion φ−∞ is one extreme member of 

the matrix means 
p

φ corresponding to the parameter p = −∞ . 

It is one of the four particular members of the one 

dimensional family of matrix means
p

φ that submit itself to 

the principles that a reasonable criteria must meet as 

presented in Pukelsheim (1993, chapter 5) we therefore 

express it in the form ( ) ( )min
C Cφ λ−∞ = to give, 

min max
0.0329 0.199075.andλ λ= =  

5. Conclusion 

This paper established the equivalence relations for the 

existence of optimal designs for the D-, A- and E- optimality 

criteria for the feasible weighted centroid designs. A 

quadratic subspace of H-invariant symmetric matrix 

containing the information matrices (
C

D ) was derived and 

used to obtain the optimal design for mixture experiment. 

Derivations of D-, A- and E-optimal weighted centroid 

designs were obtained from the information matrix giving 

0.07749, 0.0585 and 0.0329 optimal values respectively. 
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