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Grevillea robusta is widely interplanted with crops inMaragua subcounty, a practice that enhances biomass quantities in farmlands.
However, quick tools for estimating biomass of such trees are lacking resulting in undervaluation of the farm product. This
study sought to develop allometric equations for estimating tree biomass using diameter at breast height (DBH) and tree height
as predictor variables. Tree biomass was computed using thirty-three (33) trees randomly selected from 12 one hectare plots
established in each of the four agroecological zones (AEZs). DBH of all Grevillea robusta trees per plot was measured and three
trees were selected for destructive sampling to cover the variety of tree sizes. Regression analysis was used to develop equations
relating DBH/tree height to biomass based on linear, exponential, power, and polynomial functions. The polynomial and the
power equations had the highest R2, lowest SEE, and MRE values, while DBH was the most suitable parameter for estimating
tree biomass. The tree stem, branches, foliage, and roots biomass comprised 56.89%, 14.11%, 6.67%, and 22.32% of the total tree
biomass, respectively.Themean tree biomass density (12.430±1.84 ton ha−1) showed no significant difference (p=0.09) across AEZs
implying no difference in G. robusta agroforestry stocks across the AEZ. The allometric equations will support marketing of tree
products by farmers and therefore better conservation and management of the tree resource.

1. Introduction

Trees in agricultural ecosystems offset pressure on forest
resources in conventional forests and therefore play a major
role in sustaining the productivity of agricultural and forested
landscapes. They are a source of livelihood for the rural
communities providing wood and nonwood products like
resin, honey, medicine, vegetables, among others and are also
important in conservation of biological diversity, water, and
soil conservation [1]. They represent a vital source of food
for many of the world’s poorest people, providing both stable
and supplemental foods, fodder and fuel for lighting, and
cooking and food processing. Besides, they are also important
in biological diversity conservation and mitigating climate
change through carbon sequestration [2].

Quantification of the amount of biomass and/or carbon
stored in trees presently is an important component in
the implementation of the emerging carbon credit such
as Reducing Emissions from Deforestation and Degrada-
tion (REDD+) [3]. Developing countries including Kenya
can benefit from REDD+ related mechanisms by providing
accurate information about their forest and tree resources.
REDD+ requires countries to establish measurement, report-
ing, and verification (MRV) methods [4]. This may consists
of inventory of forests/trees in sampled plots and application
of appropriate allometric equations to estimate biomass [2].
Biomass estimates eventually are converted into carbon and
carbon dioxide (CO

2
) equivalents.

Most of the small scale farmers in Maragua integrate
trees (mainly Grevillea robusta) with crops in their farms.
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The specific economic values of the trees planted in agri-
cultural landscapes have not been fully explored. Since no
marketing guidelines have been developed for the different
tree products, prices of the products are normally determined
by agreements between the seller and the buyer, and this
varies from area to another, size of tree or product, and the
targeted use of the product. In many cases, such negotiations
do not favor the farmer and lowers the value of the tree,
thus demotivating farmers from planting trees. A method
that helps establish biomass stocks and provides accurate
information about the available wood resources from this
species would help in its management and conservation and
would enhance the livelihoods of the farmers.

Some allometric equations have been developed to esti-
mate tree biomass quantities using easily measurable param-
eters such as DBH and height [1–3]. Henry et al. [1] and Kuya
et al. [5] constructed equations for estimating tree biomass
in agricultural landscapes of western Kenya while Kinyanjui
et al. [6] constructed an equation for inventory of the above
ground biomass in theMau Forest EcosystemofKenya.Mugo
et al. [7] predicted stem diameter of open grown trees in
western Kenya. Since tree allometry varies from site to site
[8], such equations may not be appropriate for the conditions
of Maragua subcounty in terms of agro ecological zonation
and the purpose for which the trees are grown. Here, a variety
of wood products are marketed for various uses including
timber, firewood, pole wood, and fencing and some leaves
have been used as livestock fodder. Hence, to meet the study
area specific needs for tree products and tree components,
it was necessary that equations for estimating G. robusta
biomass quantities in the farming landscapes of Maragua
subcounty are developed.

The purpose of this study was to develop equations
relating tree biomass with easily measurable parameters of
diameter at breast height (DBH) and height as a quick tool
for valuation of tree products.The study also sought to assess
variations of G. robusta biomass among agroecological zones
of the study area as a basis for developing tree resource
management plans.

2. Materials and Methods

2.1. Study Area. The study was done in Maragua subcounty
of Murang’a county in central Kenya (Figure 1). The area
covers 839 Km2 [9], between longitude 36∘ 30󸀠E and 37∘30󸀠E
and latitude 00∘30󸀠S and 1∘S. The study area consists of four
upper midland agroecological zones (AEZ) as illustrated in
Table 1. Such variations of altitude and climate are expected
to influence allometry and also biomass productivity of G.
robusta trees.

2.2. Physical and Topographic Features. The study area is a
major source of numerous springs and rivers that drain into
River Tana through rivers Maragua, Irati, Sabasaba, Kabuku,
Makindi, Thuki, Thamuru, andThika [9]. The geology of the
subcounty consists of volcanic rocks of the Pleistocene age
and basement system rock of Achaean type. Volcanic rocks
occupy thewestern part of the county bordering theAberdare

ranges while rocks of the basement system are in the eastern
part. Porous beds and disconformities within the volcanic
rock system form important aquifers, collecting, and moving
ground water, thus regulating water supply from wells and
boreholes. In the study area Jaetzold et al. [10] classified and
described soils in AEZ as shown in Table 2.

2.3. Land Use Activities. Farmers in the study area have
actively adopted agroforestry [11]. Land use systems range
from subsistence small holder farms to more cash crop
oriented farms which relatively range from 1.5 to 2 acres.
Woody vegetation forms part of the agricultural landscape
which varies from single tree to small stands that consists of
mainly exotic trees and isolated indigenous trees managed in
different ways [11]. Trees are grown around the homesteads,
in woodlots and croplands, and along farm boundaries.
Githiomi et al. [11] further stated that trees and shrubs are
grown around the homestead, in woodlots and cropland, and
along farm boundaries and that woodlots are in small mono
specific clusters of trees mainly in lower areas of the study
area. According to Kuya et al. [5], such land use activities
influence the biomass of agricultural landscapes in different
ways depending on management activities.

2.4. Sampling Design. Stratified systematic sampling was
used on a Geographical Information System (GIS) platform
to select sampling sites in each of the AEZs. Each AEZ
was divided into three equal polygons and the centre of
each polygon was used as the reference data collection point
(Figure 2).The position of the data collection point identified
on the GIS map was recorded (Table 3), transferred into a
GPS, and traced to the ground.The GPS readings were based
on the UTM/UPS format in UTM zone 37S. A one hectare
(100 x 100 m) plot was established at the reference point
aligned to the North-South and East-West grids. All the G.
robusta trees in the plotwere recorded for diameter at 1.3 from
the ground (DBH) and total height. Three G. robusta trees in
each plot were selected for destructive sampling based on a
proportional allocation among size classes identified in the
plot.

2.5. Processing of Destructively Sampled Trees

2.5.1. Destructive Sampling. All the G. robusta trees selected
for destructive sampling were categorized into DBH classes.
The selected trees were uprooted onto tarpaulin sheets spread
on felling direction (to avoid loss of foliage), leaves stripped
off and debranched, and total tree length/height (HT) mea-
sured using a linear tape. Each of the trees was then divided
into components (trunk, branches, foliage, and roots) and the
trunkwas cross cut tomanageable sizes.The tree components
were weighed in the field and their fresh weight was recorded.
Samples were taken from the different components of the
tree and their fresh weight was taken. The samples were
subsequently oven-dried in the laboratory at 105∘C as guided
by [12].

Similarly the branches were trimmed, cross cut, and
classified into four diameter classes as 0 < D < 2 cm (Class
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Figure 1: Study area. Showing the location on Kenyan map and within the Murang’a county.

Figure 2: Maragua agroecological zones, showing polygons per zone and points for data collection.
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Table 1: Biophysical and climatic conditions of Maragua subcounty (source [10]).

Attribute Upper midland 1 (UM 1) Upper midland 2 (UM 2) Upper midland 3 (UM 3) Upper midland 4 (UM 4)
Altitude range (m) 1730 - 2430 1500 – 1730 1340 – 1500 1060 - 1340
Mean annual Rainfall (mm) 2200 1537.5 955 970
Mean annual Temperature (∘C) 18.4∘C 19.3∘C, 20.2 21.2

Table 2: Classification and description of soil in Maragua subcounty.

AEZ Physiographic Lithology Soil description

UM 1 MV2
Well drained, very deep, dark reddish to dark brown, very friable and smeary, clay loam
to clay, with thick acid humic topsoil, in places shallow to moderately deep and rocky:

Humic ANDOSOLS, partly lithic phase

UM 2 RB1
Well drained, extremely deep, dark reddish brown to dark brown, friable and slightly

smeary clay with an acid humic topsoil: Ando-humic NITISOLS: with humic
ANDOSOLS.

RB2 well drained, extremely deep, dusky red to dark reddish brown, friable clay with an acid
humic topsoil: humic NITISOL

UM 3 RB3

Well drained, extremely deep, dusky red to dark reddish brown friable clay; with inclusion
of well drained, moderately deep, dark red to dark reddish brown, friable clay over rock,
pisoferric or petroferric materials. Eutric NITISOLS: with nito-chromic CAMBISOLS
and chromic ACRISOLS and LUVISOLS, partly lithic, pisoferric or petroferric phase

UM 4 LB1 Well drained, very deep, dark red, very friable clay: Nito-rhodic FERRALSOLS.

Table 3: Coordinates of data collection points for all the AEZs.

Agroecological Zone Plot number Eastings (m) Nothings (m)

UM 4
1 305449.791 9900308.287
2 301575.475 9908749.165
3 297040.133 9914658.828

UM 3
1 290497.054 9896663.132
2 298551.514 9903069.450
3 289507.887 9901526.723

UM 2
1 281419.488 9909982.717
2 276445.967 9904576.637
3 268721.854 9911103.375

UM 1
1 263165.408 9896663.132
2 259196.650 9918509.281
3 256504.015 9914786.820

1), 2 ≤ D < 5 cm (Class 11), 5 ≤ D < 10 cm (Class 111), and
D≥ 10 cm (Class IV) for easy of weighing.Their weights were
taken for green weight to the nearest 0.1 kg. The heavier ones
were measured as individual billets while the lighter ones
were bundled together and weighed for their green weight.
Aliquots were taken and labeled and their green weight was
recorded to the nearest 0.01gm kept in bags and taken to
the laboratory for oven-dry (105∘C) weight measurement.
The foliage was collected on to the tarpaulin sheet, bundled
into gunny bags whose weights were known, and weighed
to the nearest 0.1kg. Their green weights were calculated as
the difference between the gross weight and the weight of
the empty gunny bags and recorded. A sample of the foliage
was taken from the combined mass of the foliage, weighed,
recorded to the nearest 0.01gm, and oven-dried (70∘C).

Excavation of the tree was done manually until all the
roots were removed.The taproot was followed to its endpoint
and root length recorded. Soil embedded in the stump joints
and on root surface was removed by use of a brush and water.
The roots were classified into size classes as (Class 1) 0 < D <
2 cm, (Class 11) 2 ≤ D < 10 cm, and (Class 111) D ≥10 cm for
ease of weighing. Roots were weighed by size classes for green
weight and recorded. An aliquot of each root size class was
extracted and weighed for green weight, recorded, tagged,
packaged, and taken to the laboratory to oven-dry at 105∘C.
In all the cases, the aliquots were left in the oven to dry and
changes in dry weight were monitored on a daily basis until
they reached a constant weight.

2.5.2. Biomass Measurement. The aliquot’s green and oven-
dry weights were used to get the dry-green weight ratios.
These were subsequently used to convert the green weight of
the tree component (trunks, branches, foliage, or roots) to dry
weight, which is the component’s biomass. The total above-
ground (AGB) biomass was obtained by getting the sum of
the biomass of the trunk, branches, and foliage. Similarly the
total belowground (BGB) biomass was obtained by summing
up all the dry weights of all the root sections of that given tree.
Finally the total tree biomass (TTB) was obtained by adding
up aboveground and belowground biomass. Scatter plots
and function graphs were used in assessing the relationships
between easilymeasurable variables of DBH andHT together
with a combination ofDBHandHT against total tree biomass
and tree component biomass

2.5.3. Development of Biomass Equations. Thirty-three
destructively sampled trees were used to develop the biomass
estimation allometric equations. The measured predictor



International Journal of Forestry Research 5

Table 4: Biomass partitions (Kg) of each component and total tree biomass of sampled trees for every AEZ.

Zone Stem Branches Foliage AGB BGB TTB
UM 1 550.25 129.84 81.05 761.14 166.83 927.95
UM 2 1,011.10 218.45 87.36 1,316.91 372.56 1,689.47
UM 3 1,204.43 332.89 145.24 1,682.56 535.24 2,217.84
UM 4 838.14 213.13 109.07 1,160.84 339.87 1,500.61
Total 3,604.32 894.31 422.72 4,925.45 1,414.50 6,335.89

Table 5: Percentage contribution to total tree biomass among tree components in the different AEZ.

Zone Stem Branches Foliage AGB BGB
UM 1 59.30 13.99 8.73 82.02 17.98
UM 2 59.85 12.93 5.17 77.95 22.05
UM 3 54.31 15.01 6.55 75.86 24.13
UM 4 55.85 14.20 7.27 77.36 22.65
Total 56.89 14.11 6.67 77.74 22.33

variables DBH, height (Ht), and product of DBH and HT
(DBH∗Ht) for each of the destructively sampled trees
were regressed to the dry weight (biomass) of the total
tree biomass (TTB) or component biomass [(AGB), (BGB)
branches biomass (BR), and foliage biomass (F)].

Scatter plots were used in illustrating the relationships
between total tree and tree component biomass with the
easily measurable variables. To derive the equation for each
of the dependent variable (TTB, AGB, BGB, BR, and F) the
regression functions (exponential, linear, polynomial, and
power) were superimposed on the scatter plot graphs. The
selection of the best fit equation was based on the lowest
standard error of the estimate (SEE) which is the standard
deviation of the residuals: the lowest residual mean error
(RME) and the highest coefficient of determination (R2).

2.5.4. Validation of Developed Allometric Equations. The
mean differences between predicted and observed biomass
were used to test the suitability of the equation. Simple linear
regression analysis between observed and predicted values of
the equations quantifies the tendency of residuals whereby R2
and mean standard error (MSE) indicate the precision of the
estimates. Residual plots were also used to assist in the eval-
uation of the equations. Bias% was computed as ((predicted
biomass-measured biomass)/measured biomass)∗ 100 [13].

Finally the developed equation for total tree biomass
was compared with several equations in similar management
units but different geographical areas.The two sets of biomass
values were subjected to a paired t test [14] to find if
differences occur in each biomass estimate comparison.

3. Results

3.1. Preliminary Findings of the Dataset. A total of 1,090 trees
were measured for DBH in the twelve (12) plots 222 in AEZ 1,
308 in AEZ2, 292 in AEZ 3, and 268 in AEZ 4. The values for
DBH ranged from 1cm to 39.5cm with a mean of 11.08 cm in
AEZ1, 11.51 cm in AEZ 2, 10.07 cm in AEZ 2, and 12.14 cm in

AEZ 4.Height values ranged from6.0m to 24.8mwith amean
of 11.67m in AEZ 4, 13.32m in AEZ 3, 14.03m in AEZ 2, and
11.42m in AEZ 1. Out of the 1090 trees measured for DBH, 33
trees were destructively sampled for biomass measurements.

3.2. Percentage Contributions of Different Tree Components
Biomass. The summary distribution of the total tree biomass
and tree biomass components of the thirty-three destruc-
tively sampled trees of different sizes recorded in the study
area are as shown in Tables 4 and 5. The total tree biomass
(TTB) for the 33 trees was 6,335.89 kg distributed as follows:
stem/trunk (56.89%), branches (14.11%), foliage (6.67%), and
roots (22.33%).Thus aboveground biomass (AGB) comprised
77.74%while belowground biomass (BGB) was 22.33%.These
are the proportions of biomass available for specific uses,
e.g., timber (stem biomass), fuel wood (branches biomass),
mulch/livestock feed/green manure (foliage biomass), and
soil organic carbon services (roots).

The stem comprises the largest percentage of the total
tree biomass (Table 5) while foliage has the least biomass
contribution and this is in agreement with similar studies
[1, 5, 15]. The 22.33% proportion of BGB is close to the IPCC
default value for BGB which is taken as 24% [16]. The slight
variations in allocation among AEZ could be a justification
for development of very specific allometric equations for each
of theAEZ. For example, the results indicated a slight increase
in BGB/AGB ratio with altitude rise from UM1 (0.219) to
UM4 (0.293). Such information on component ratios among
G. robusta and which is based on tree allometry variations
requires further research and supports its conservation and
usage.

3.3. Illustrations of Biomass Estimation from Various Func-
tions. Various functions were plotted and the biomass esti-
mates done for each function. The goodness of fit in each
regression was illustrated by the coefficient of determination
(R2 value) which explains how close the measured data are to
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Table 6: Allometric equations for estimating various biomass using DBH.

Function Equations MRE R2 SEE
Exponential TTB = 10.91e0.150DBH -29.10 0.84 4.57
Power TTB = 1.811DBH1.658 5.05 0.98 1.34
Polynomial TTB = 0.322DBBH2+7.93DBH-19.26 0.15 0.93 1.33
Linear TTB= 18.00DBH - 73.22 0.07 0.91 1.52
Multiple TTB = 11.356DBH – 8.924HT + 0.536(DBH∗HT) + 18.27 -0.16 0.93 1.40
Exponential AGB=8.474e0.150DBH -22.60 0.83 3.56
Power AGB=1.384DBH1.665 3.2 0.98 0.99
Linear AGB=13.99DBH - 56.96 0.02 0.92 1.12
Polynomial AGB=0.248DBH2 + 6.243DBH – 15.45 0.002 0.94 0.99
Multiple AGB=8.641DBH – 6.9HT + 0.424(DBH∗HT) + 14.53 0.06 0.90 1.98
Exponential BGB = 2.311e0151DBH -5.13 0.82 1.04
Polynomial BGB = 0.074DBH2+1.688DBH – 3.791 0.10 0.82 0.50
Linear BGB = 4.013DBH - 16.24 -0.01 0.81 0.53
Multiple BGB =2.713DBH – 2.028HT + 0.111(DBH∗HT) +3.79 0.10 0.82 0.51
Power BGB = 0.401DBH1.642 3.42 0.93 0.51

the fitted regression line [14].These illustrations are shown in
Figures 3, 4, and 5.

A comparison of functions for estimating TTB fromDBH
illustrates that the exponential function overestimates DBH
for a tree of 35cm DBH. Though the other three functions
have a near similar estimate, the R2 values favor the power
function (R2 = 0.97) and the polynomial function (R2= 0.93).
Though the linear function gives relatives good R2 value,
foresters have disqualified linear relationships because they
do not illustrate the ideal relationship between predictor
variables and biomass or volume over a wide diameter size
distribution [8, 16].

Estimation of total tree biomass from height varied
greatly among functions making it difficult to select the ideal
function. The R2 values were also lower compared to those
of using DBH as a predictor variable. The same trend was
noted in estimating ABG from tree height. Noting that height
measurement in forests is difficult and the fact that farmers
sell trees while standing, the use of tree height may increase
tree biomass or volume estimation costs, while not increasing
accuracy of estimates. As such trials of height as a biomass-
predictor variable were discarded in favor of DBH which is
easy to measure and can be measured with high levels of
accuracy [6, 8].

DBH gives a good estimate of AGB based on R2 values
with 0.98 for the power function and 0.94 for the polynomial
function. Kuya [5] identified power functions as most ideal
for estimating AGB in western Kenya while Henry et al.
[1] preferred polynomial functions. It has been found that
either of these functions is ideal based on the diameter
size distribution [8]. Kuya [5] preferred power functions
because of the large DBH size distribution which disqualifies
polynomial functions which often have two turning points
[14] and may not define the biomass-predictor relationship
over a wide range of diameter sizes. In this case where G.
robusta does not grow to large sizes in the study area, either a

polynomial or a power function becomes ideal based on this
criteria of choice.

3.4. Choice of Equation Based on Standard Error of Estimate
and Mean Residual Error. Apart from the coefficient of
determination, the standard error of estimate (SEE) and the
mean residual error (MRE) have been used in choice of
appropriate regression equations [14]. The SEE is a measure
of the accuracy of predictionsmadewith a regression line and
the lower the value, the better the accuracy of an allometric
equation [8]. Zar [14] also explains the mean residual error
as another measure of the accuracy of a regression equation.
Since residuals are differences between the data points and
the regression line, the mean residual error refers to the error
that is not explained by the regression line.

The choice of equation based on the three statistics is
illustrated for the various biomass components in Table 6

Though linear functions had the least MRE for TTB and
BGB, their previously described limitations [8, 14] disqual-
ifies them. The polynomial functions have very small MRE
values in all estimated biomass components of TTB (0.15kg),
AGB (0.002Kg), and BGB (0.1Kg) illustrating their appropri-
ateness based on this second selection criteria. Exponential
functions have large mean bias in all functions and this
further illustrates their inappropriateness in this selection.
A bias of less than 5% of the total tree biomass is within
acceptable range [16, 17] and would provide the farmers with
the real value of the tree. In this case the polynomial function
is very accurate with very minimal bias within the range of
diameter sizes tested.

Based on the SEE, the polynomial function gave the
lowest values at 1.33 for TTB, 0.99 for ABG, and 0.5 for
BGB.This compared well with the power function which had
1.34 for TTB, 0.99 for AGB, and 0.51 for BGB. In this third
selection criteria, the polynomial function again takes best
preference.
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Figure 3: Comparison of functions for estimating total tree biomass from DBH.
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Figure 4: A comparison of functions for estimating total tree biomass from tree height.

Based on the statistics, Table 7 shows the list of preferred
equations for estimating the different tree biomass compo-
nents. Though all the preferred equations are polynomial
functions, it should be noted that the power functions were
the next best alternative and their application has already
been illustrated for agroforestry species of western Kenya [5].
The limitation of two turning points observed in polynomial
functions [14] may not apply in the study area where G
robusta grows because the trees do not grow beyond the
40cm DBH size that was used in this study. It is however
recommended that such equations should not be applied
where trees of bigger sizes grow.

Table 7: A list of selected allometric equations for estimating
biomass components.

Biomass component Equations
Total Tree TTB = 0.322DBBH2+7.93DBH-19.26
Above ground AGB=0.248DBH2 + 6.243DBH – 15.45
Below ground BGB = 0.074DBH2+1.688DBH – 3.791
Branches BRA = 0.030DBH2 + 1.574DBH – 4.984
Foliage F = 0.04DBH2 + 1.949DBH – 3.134
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Figure 5: A comparison of functions for estimating above ground tree biomass from DBH.

Table 8: A validation of the equation with similar equations using the F values of the paired t-test.

Author F calculated F critical Comments Discussion

Kuya [5] 1.5375557 1.8283
There is no
significant
difference

The Kuya equation was developed in
similar Agroforestry conditions but in a

different AEZs of Kenya.

Henry [1] 0.817302 1.8283
There is no
significant
difference

The equation was developed for
Agroforestry trees of Western Kenya in a

different AEZ.

Benedicto [19] 2.070408 1.8408
There is a
significant
difference.

The equation was developed in Mexico. A
totally different biome and may not be

applicable in the study area.

Rurangwa [18] 1.118687 1.8408
There is no
significant
difference

Rurangwa developed this equation in
Agroforestry trees of Ruanda which is

within East Africa.

Table 9: Average biomass values per hectare in AEZs.

Component Average biomass (Kg) per hectare
UM 1 UM 2 UM 3 UM 4

Foliage 922.128 874.343 724.966 788.837
Branches/foliage 1,964.818 1,849.623 1,533.623 1,668.739
Roots/belowground biomass 3,109.676 2,927.150 2,427.314 2,640.889
Stem/trunk 7,929.378 7,457.484 6,183.147 6,728.175
Total for tree 13,926.00 13,108.60 10,869.05 11,826.64

3.5. Validation of Developed Allometric Equations. Validation
of the equations based on the bias of the equation in
estimating specific diameter sizes is illustrated in residual
plots used to assist in validation which are shown in Figure 6.

A second validation to compare biomass estimates from
the preferred equation and that of similar studies shows
that the developed equation compares well with other
equations developed in agroforestry conditions of Kenya

[1, 5] and Rwanda [18] but is not applicable in biomes far
from the study area [19]. This finding illustrates that the
process of destructive sampling to develop new allomet-
ric equations within a small geographical range may not
enhance accuracy of estimates and an equation applicable
in a similar land and tree management activity may as well
be applicable in another one. The results are illustrated in
Table 8.
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Figure 6: Residual scatter plots of total tree biomass using polynomial and power function for TTB.

Table 10: Total tree biomass and tree component biomass data of the 33 trees destructively sampled per every Agroecological Zone (AEZ).

AEZ Tree No DBH (cm) Height (m) Dry weights of biomass in kg
Stem Branches foliage AGB BGB TTB

UM4

1 5.2 6.55 10.16 1.625 5.22 17.01 3.82 20.83
2 1.5 3.6 1.55 0.644 1.02 3.31 0.801 4.01
3 12 14.3 93.69 10.62 12.1 116.41 37.43 153.84
4 13.2 12.7 70.22 11.08 17.49 98.79 23.46 122.25
5 22.5 16.7 166.66 50.3 22.92 239.88 63.14 303.02
6 29.8 14.5 247.52 80.42 21.27 349.21 119.55 468.76
7V 1.8 6.0 1.65 0.33 0.662 2.64 1.461 4.10
8V 13.7 14.5 112.22 26.61 14.64 153.47 32.42 185.89
9V 20 16.1 134.87 31.5 13.75 180.12 57.79 237.91

UM3

10 12.0 12.75 59.01 6.88 13.14 79.03 32.4 111.43
11 15.4 13.7 109.4 24.75 20.65 154.8 53.63 208.43
12 7.0 8.65 20.38 5.0 7.5 32.88 9.83 42.71
13 5.6 8.65 12.68 2.8 4.13 19.61 5.94 25.55
14 27.6 19.0 270.53 92.98 17.97 381.48 130.37 511.85
15 27.7 19.2 306.55 83.25 16.0 405.8 127.08 532.88
16V 16.9 12.2 118.03 43.65 22.39 184.07 86.03 270.1
17V 9.8 9.1 32.69 10.0 10.2 52.89 15.01 67.94
18V 25.8 16.6 275.16 63.58 33.26 372.0 74.95 446.95

UM2

19 1.7 7.1 1.95 0.6 1.45 4.0 1.79 5.79
20 8.7 9.8 24.98 6.43 8.75 40.16 7.86 48.02
21 15.3 14.3 58.83 38.5 15.51 112.84 21.46 134.30
22 14.8 15.0 69.63 32.71 10.46 112.8 33.99 146.79
23V 12.2 12.4 40.63 13.93 13.5 68.06 17.75 85.81
24V 12.8 15.4 62.94 19.15 7.0 89.09 27.26 116.35
25 22.0 17.0 164.71 30.03 11.09 205.83 68.36 274.19
26 29.8 21.2 259.8 33.2 10.89 303.89 79.34 383.23
27V 27.8 24.8 327.63 43.9 8.71 380.24 114.75 494.99

UM1

28 2.0 6.0 3.21 0.94 1.19 5.34 1.01 6.35
29 8.9 9.9 28.87 10.25 10.01 49.13 5.90 55.03
30V 4.5 9.1 11.96 2.5 3.86 18.32 3.60 21.92
31 12.8 13.0 114.66 31.50 31.22 177.38 65.22 242.6
32 24.9 19.0 262.84 37.75 18.57 319.16 56.50 375.66
33 20.4 11.5 128.71 46.9 16.2 191.81 34.60 226.41
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Table 11: Allometric equations for estimating branch biomass using DBH.

Function Equation MRE R2 SEE
Exponential BR = 4.644e0.069Dbh 11.72 0.93 0.75
Logarithmic BR = 10.56ln(DBH) +1.534 0.02 0.84 0.72
Polynomial BR = 0.077DBH2 + 3.373DBH +0.213 - 4.53 0.99 0.58
Linear BR = 0.941DBH+ 13.24 0.03 0.96 0.73
Power BR = 1.901DBH0.793 11.59 0.99 0.73s

Table 12: Allometric equations for estimating foliage using DBH.

Function Equation MRE R2 SEE
Exponential F = 4.795e0.045DBH 2.74 0.97 0.24
Logarithmic F = 3.62ln(DBH) + 4.020 0.02 0.84 0.22
Polynomial F = -0.031DBH2 + 1.270DBH + 3.235 -1.83 0.99 0.58
Linear F = 0.295DBH + 8.452 0.003 0.97 0.23
Power F= 2.213DBH0.596 -2.37 0.98 0.23

Table 13: Allometric equations for estimating TTB using HT.

Function Equation MRE R2 SEE
Exponential TTB = 3.090e0.266HT -37.50 0.54 10.10
Logarithmic TTB = 315.7ln(HT) – 597.3 0.06 0.93 3.00
Polynomial TTB = -0.0409HT2 + 18.63HT + 132.7 0.21 0.99 2.52
Linear TTB = 29.69HT- 198.0 0.02 0,74 2.55
Power TTB= 0.401HT.1.642 -5.44 0.97 0.53

Table 14: Allometric equations for estimating AGB using HT.

Function Equation MRE R2 SEE
Exponential AGB = 2.454e0.263HT -24.37 0.54 7.44
Logarithmic AGB = 240.1ln(H) – 452.6 0.084 0.93 2.48
Polynomial AGB= -0.312HT2 + 14.11HT- 98.72 0.24 0.99 2.10
Linear AGB= 22.55HT-148.50 0.02 0.70 2.12
Power AGB= 0.027HT3.174 7.93 0.82 2.86

Table 15: Allometric equations for estimating BGB using HT.

Function Equation MRE R2 SEE
Exponential BGB = 0.631e0.269HT -6.22 0.53 2.26
Logarithmic BGB = 70.7ln(HT) - 133.3 -0.04 0.93 0.79
Polynomial BGB = -0.067HT2 + 4.781HT–32.58 0.15 1 0.71
Linear BGB = 6.009HT–43.45 0.10 0.64 23.52
Power BGB= 0.006HT3.241 5.84 0.80 31.34

Table 16: Allometric equations for estimating TTB using combination of DBH and HT (DBH∗HT = P).

Function Equation MRE R2 SEE
Exponential TTB= 23.48e0.006P -7.61 0.73 6.67
Logarithmic TTB= 107.7ln(P) - 339.7 0.002 0.72 2.85
Polynomial TTB = -0.000P2 + 1.11P–2.05 -4.02 I 2.52
Linear TTB = 0.829P–0.929 0.06 0.90 1.58
Power TTB= 0.395P1.125 2.15 0.98 2,68
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Table 17: Allometric equations for estimating AGB using combination of DBH and HT (DBH∗HT = P).

Function Equation MRE R2 SEE
Exponential AGB = 18.26e0.0006P -7.46 0.73 5.24
Logarithmic AGB = 82.22ln(P) – 258.1 -6.88 0.72 2.31
Polynomial AGB = -0.000P2 + 0.829P–16.09 -2.9 1 1.85
Linear AGB = 0.630P + 0.965 0.19 0.86 1.46
Power AGB= 0.310P1.119 3.837 0.99 1.52

Table 18: Allometric equations for estimating BGB using combination of DBH and HT (DBH∗HT = P).

Function Equation MRE R2 SEE
Exponential BGB = 4.95e0.0006P 1.34 0.73 -1.45
Logarithmic BGB = 24.24ln(P) – 76.22 0.01 0.72 0.75
Polynomial BGB = -0.000P2 + 0.255P–5.495 -1.01 1 0.69
Linear BGB = 0.184P + 0.575 0.07 0.78 0.75
Power BGB= 0.084P1.125 3.06 0.99 0.75

Table 19: Generated TTB from developed equation using DBH.

UM 1 GEN UM 2 GEN. UM 3 GEN UM 4 GEN
DBH BIOM DBH BIOM DBH BIOM DBH BIOM
12.8 129.5594 13.9 147.4242 18.6 233.6786 30.3 518.2414
2.4 4.18944 1 6.674 17 202.51 29.8 504.0422
1 6.674 9.2 77.25136 9.1 75.93304 1 6.674
1 6.674 1 6.674 18.8 237.7058 4.4 22.18384
4.4 22.18384 1 6.674 14.6 159.2514 26.5 414.892
15.4 173.205 13.5 140.826 18.5 231.676 1 6.674
16 183.976 1 6.674 2.5 5.02 1 6.674
10 88.06 16 183.976 16 183.976 1 6.674
10 88.06 3 9.282 19.4 249.9618 16 183.976
13 132.742 15.4 173.205 10.8 99.33456 18 221.772
12.8 129.5594 21.5 294.922 15.3 171.4354 13.5 140.826
20.9 281.7486 1.7 1.42064 12.8 129.5594 1 6.674
2.2 2.55016 12.2 120.1862 16.2 187.6246 14.8 162.6962
19 241.762 8 61.912 20.9 281.7486 17.5 212.05
2 0.94 8.76 71.50521 19 241.762 16 183.976
8.9 73.31824 13 132.742 2.2 2.55016 15 166.17
1.4 3.71576 1 6.674 7.8 59.45736 18.5 231.676
1.2 5.20944 1 6.674 5.2 30.19696 14 149.092
16.5 193.152 1 6.674 4.5 23.16 16.5 193.152
12.6 126.4058 1.5 2.958 4.5 23.16 12.6 126.4058
15.3 171.4354 1 6.674 2.4 4.18944 15.3 171.4354
13 132.742 2 0.94 4.2 20.25336 1 6.674
11.8 114.083 9.7 83.95216 5.1 29.16984 13 132.742
1.4 3.71576 9.6 82.59744 2.5 5.02 11.8 114.083
3.3 11.92656 12.2 120.1862 4.5 23.16 14.5 157.54
1.5 2.958 8.7 70.73256 5.4 32.27304 17.1 204.4034
2 0.94 8.3 65.64856 2.6 5.85784 1 6.674
1 6.674 10.9 100.7766 1 6.674 1 6.674
17.1 204.4034 6.8 47.62096 1 6.674 18 221.772
17.1 204.4034 6.9 48.77184 9 74.622 1 6.674
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Table 19: Continued.

UM 1 GEN UM 2 GEN. UM 3 GEN UM 4 GEN
DBH BIOM DBH BIOM DBH BIOM DBH BIOM
9 74.622 2.9 8.41504 10.5 95.052 12.4 123.2814
11.4 108.0962 1 6.674 4.6 24.14344 11.4 108.0962
10.8 99.33456 5.1 29.16984 1 6.674 10.8 99.33456
11 102.226 11 102.226 1 6.674 9.3 78.57696
10.5 95.052 1 6.674 1 6.674 11.8 114.083
12 117.12 12 117.12 1 6.674 15.6 176.7662
7 49.93 10.4 93.63904 1 6.674 7 49.93
12.2 120.1862 5.2 30.19696 7 49.93 17.5 212.05
11.1 103.6826 11.1 103.6826 5.3 31.23136 14.4 155.8358
13 132.742 6.1 39.76864 1.3 4.46624 11.8 114.083
10 88.06 1 6.674 1.8 0.64104 10 88.06
12.8 129.5594 12.8 129.5594 1 6.674 13 132.742
20 262.48 6.8 47.62096 1 6.674 8 61.912
1 6.674 1 6.674 1 6.674 13.8 145.7638
10.4 93.63904 1 6.674 1 6.674 11.4 108.0962
14 149.092 1 6.674 9.8 85.31416 15.4 173.205
16 183.976 10.4 93.63904 1 6.674 8.4 66.90864
19.5 252.03 6.2 40.86856 1 6.674 7.8 59.45736
8.1 63.15024 9.5 81.25 2.8 7.55536 22.5 317.46
5.6 34.37824 8.5 68.176 4.9 27.13744 1 6.674
5.2 30.19696 6.5 44.212 4.2 20.25336 15.6 176.7662
10 88.06 8.1 63.15024 12.1 118.6494 1 6.674
13 132.742 1 6.674 8.7 70.73256 1 6.674
16.9 200.6238 1 6.674 5.6 34.37824 2.9 8.41504
21 283.926 8.2 64.39576 1 6.674 13.6 142.4646
21 283.926 5.7 35.44176 15 166.17 16.4 191.3022
13 132.742 1 6.674 20.2 266.711 1 6.674
3.9 17.41224 6 38.676 29.7 501.2242 1 6.674
17.3 208.2122 1 6.674 19.5 252.03 17 202.51
16 183.976 1 6.674 23 329.002 16 183.976
16 183.976 1 6.674 2.3 3.36616 18.7 235.6886
21 283.926 6.4 43.09024 18.3 227.6926 10.4 93.63904
18.7 235.6886 4.8 26.13216 12 117.12 12.2 120.1862
3.9 17.41224 1 6.674 5.4 32.27304 13 132.742
13.2 135.9538 1 6.674 13.2 135.9538 18 221.772
18 221.772 1 6.674 2 0.94 1 6.674
5.8 36.51256 1.5 2.958 1 6.674 1 6.674

3.6. Biomass Stocks amongAgroecological Zones. Based on the
allometric equations, the average TTB for G. robusta trees
generated in each of the AEZ studied is as shown in Table 9.
The TTB stock for each AEZ was 13. 926 tonha−1, 13.109
tonha−1, 10.869 tonha−1, and 11.827 tonha−1 in UM1, UM2,
UM3, and UM4, respectively. Variability of tree biomass
between the four agroecological zones showed no significant
difference (p-value > 0.05) implying that though there could
be a slight difference in the allometry of the tree species
among AEZ, the total biomass does not vary. This also
explains that the management of G robusta trees in the

agricultural landscapes of the four AEZ does not differ and
the farmers can form a marketing unit despite their different
AEZ and their production quotas can be the same.

The average biomass stock of 12.43 ton/ha in the study
compares well with the findings of Albrecht [20], 2-22
ton/ha, Henry [1], 9–11ton/ha, and Kuya [5], 16 ton/ha,
all of which are for agricultural landscapes. This finding
gives a better glimpse of the tree component in agricul-
tural landscapes and is a good guide for the develop-
ment of carbon stock factors in agricultural landscapes
[21]. With this moderate stock, the farmers are able to
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practice agricultural activities while maintaining a tree cover
in the farms which stabilizes the agricultural landscapes
and reduces pressure for wood products from adjacent
forests.

4. Conclusion and Recommendations

This study has developed a quick tool for estimating biomass
from G. robusta trees in agricultural landscapes of Maragua
county. The allometric equations allow better marketing
of the trees and their components and will favor farmers
who will get better value from their trees. The findings
illustrate no much variations in stocking among the study
strata and also comparing with studies in similar agricultural
setups. Therefore the study illustrates the usability of general
allometric equations which eliminate the expensive processes
of destructive sampling. As such the developed equations
are ideal for a wide range of application in areas of Kenya
where G. robusta grows without any need to develop other
equations.

The study identified only small sized G. robusta trees
and the size limitation is influenced by their growth char-
acteristics and the market conditions. The study proposes
a validation of the allometric equations in cases where
bigger sized trees exist. Similarly the small sample size
used in this study may have not captured enough infor-
mation on the allometry of the tree and a collation of
this data and other existing datasets can help compare
characteristics of allometry that may influence the equation
used
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